Search results for "Path integral solution"

showing 7 items of 7 documents

Path integral solution handled by Fast Gauss Transform

2009

Abstract The path integral solution method is an effective tool for evaluating the response of non-linear systems under Normal White Noise, in terms of probability density function (PDF). In this paper it has been observed that, using short-time Gaussian approximation, the PDF at a given time instant is the Gauss Transform of the PDF at an earlier close time instant. Taking full advantage of the so-called Fast Gauss Transform a new integration method is proposed. In order to overcome some unsatisfactory trends of the classical Fast Gauss Transform, a new version termed as Symmetric Fast Gauss Transform is also proposed. Moreover, extensions to the two Fast Gauss Transform to MDOF systems ar…

Mechanical EngineeringMathematical analysisMathematicsofComputing_NUMERICALANALYSISAerospace EngineeringOcean EngineeringStatistical and Nonlinear PhysicsProbability density functionWhite noiseCondensed Matter Physicssymbols.namesakeNuclear Energy and EngineeringKronecker deltaComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONPath integral formulationsymbolsTwo-sided Laplace transformApplied mathematicsGauss–Seidel methodSettore ICAR/08 - Scienza Delle CostruzioniPath integral solution Fast Gauss Transform Symmetric Fast Gauss Transform Fokker-Planck equation Ito calculusS transformGaussian processCivil and Structural EngineeringMathematicsProbabilistic Engineering Mechanics
researchProduct

Rollio delle navi in presenza di onde modellate come processi gaussiani e poissoniani agenti simultaneamente.

2008

Obiettivo del presente lavoro è l’estensione del metodo della path integral solution (PIS) per lo studio della dinamica del rollio delle navi in presenza di onde modellate come processi gaussiani e poissionani agenti simultaneamente. Si è proceduto dapprima a mostrare come la PIS consenta di valutare l’evoluzione temporale della funzione densità di probabilità (PDF) del processo di risposta, applicando il metodo ad equazioni differenziali stocastiche soggette a forzanti esterne gaussiane e poissoniane. Successivamente si è trattato il caso di un sistema non lineare soggetto ad entrambi i rumori gaussiano e poissoniano agenti contestualmente. Si è infine affrontato sia analiticamente che num…

Processi aleatoriSettore ICAR/08 - Scienza Delle CostruzioniPath Integral Solution
researchProduct

Path integral solution for nonlinear systems under parametric Poissonian white noise input

2016

Abstract In this paper the problem of the response evaluation in terms of probability density function of nonlinear systems under parametric Poisson white noise is addressed. Specifically, extension of the Path Integral method to this kind of systems is introduced. Such systems exhibit a jump at each impulse occurrence, whose value is obtained in closed form considering two general classes of nonlinear multiplicative functions. Relying on the obtained closed form relation liking the impulses amplitude distribution and the corresponding jump response of the system, the Path Integral method is extended to deal with systems driven by parametric Poissonian white noise. Several numerical applica…

Poisson white noiseMonte Carlo methodAerospace EngineeringOcean EngineeringProbability density function02 engineering and technologyImpulse (physics)01 natural sciencesPath integral solution0203 mechanical engineering0103 physical sciencesApplied mathematics010301 acousticsCivil and Structural EngineeringMathematicsParametric statisticsMechanical EngineeringMathematical analysisStatistical and Nonlinear PhysicsWhite noiseCondensed Matter PhysicsJump responseNonlinear system020303 mechanical engineering & transportsParametric inputNuclear Energy and EngineeringPath integral formulationNonlinear system
researchProduct

Path integral solution for non-linear system enforced by Poisson White Noise

2008

Abstract In this paper the response in terms of probability density function of non-linear systems under Poisson White Noise is considered. The problem is handled via path integral (PI) solution that may be considered as a step-by-step solution technique in terms of probability density function. First the extension of the PI to the case of Poisson White Noise is derived, then it is shown that at the limit when the time step becomes an infinitesimal quantity the Kolmogorov–Feller (K–F) equation is fully restored enforcing the validity of the approximations made in obtaining the conditional probability appearing in the Chapman Kolmogorov equation (starting point of the PI). Spectral counterpa…

Characteristic function (probability theory)Mechanical EngineeringMathematical analysisFokker-Planck equationAerospace EngineeringConditional probabilityKolmogorov-Feller eqautionOcean EngineeringStatistical and Nonlinear PhysicsProbability density functionWhite noiseCondensed Matter PhysicsPoisson distributionPath Integral Solutionsymbols.namesakeNuclear Energy and EngineeringPath integral formulationsymbolsFokker–Planck equationSettore ICAR/08 - Scienza Delle CostruzioniChapman–Kolmogorov equationCivil and Structural EngineeringMathematicsProbabilistic Engineering Mechanics
researchProduct

Path Integral Method for Nonlinear Systems Under Levy White Noise

2017

In this paper, the probabilistic response of nonlinear systems driven by alpha-stable Lévy white noises is considered. The path integral solution is adopted for determining the evolution of the probability density function of nonlinear oscillators. Specifically, based on the properties of alpha-stable random variables and processes, the path integral solution is extended to deal with Lévy white noises input with any value of the stability index alpha. It is shown that at the limit when the time increments tend to zero, the Einstein–Smoluchowsky equation, governing the evolution of the response probability density function, is fully restored. Application to linear and nonlinear systems under…

Mechanical EngineeringMathematical analysisShot noise020101 civil engineering02 engineering and technologyWhite noiseLevy white noiseStability (probability)Stochastic Response0201 civil engineeringPath Integral SolutionNonlinear systemsymbols.namesake020303 mechanical engineering & transportsAdditive white Gaussian noise0203 mechanical engineeringGaussian noisePath integral formulationsymbolsSafety Risk Reliability and QualitySafety ResearchMathematics
researchProduct

Probabilistic response of linear structures equipped with nonlinear dampers devices (PIS method)

2008

Passive control introducing energy absorbing devices into the structure has received considerable attention in recent years. Unfortunately the constitutive law of viscous fluid dampers is highly nonlinear, and even supposing that the structure behaves linearly, the whole system has inherent nonlinear properties. Usually the analysis is performed by a stochastic linearization technique (SLT) determining a linear system equivalent to the nonlinear one, in a statistical sense. In this paper the effect of the non-Gaussianity of the response due to the inherent nonlinearity of the damper device will be studied in detail via the Path Integral Solution (PIS) method. A systematic study is conducted…

Short-time Gaussian approximationStochastic linearization techniqueViscous damperNonlinear systemSettore ICAR/08 - Scienza Delle CostruzioniPath integral solution
researchProduct

Non-linear Systems Under Poisson White Noise Handled by Path Integral Solution

2008

An extension of the path integral to non-linear systems driven by a Poissonian white noise process is presented. It is shown that at the limit when the time increment becomes infinitesimal the Kolmogorov— Feller equation is fully restored. Applications to linear and non-linear systems with different distribution of the Dirac's deltas occurrences are performed and results are compared with analytical solutions (when available) and Monte Carlo simulation.

Mechanical EngineeringInfinitesimalMathematical analysisMonte Carlo methodAerospace EngineeringWhite noisePoisson distributionPoisson White Noise Kolmogorov-Feller equation Path integral solution.Nonlinear systemsymbols.namesakeDistribution (mathematics)Mechanics of MaterialsAutomotive EngineeringPath integral formulationsymbolsGeneral Materials ScienceLimit (mathematics)Settore ICAR/08 - Scienza Delle CostruzioniMathematicsJournal of Vibration and Control
researchProduct